Ferromagnetic Interaction of Imidazolate-Bridged
Copper(II)-Chromium(III)-Copper(II) Complex

Naohide MATSUMOTO,* Keijí INOUE, Hisashi ŌKAWA, and Sigeo KIDA Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812

Imidazolate-bridged copper(II)-chromium(III)-copper(II) complex, $[\operatorname{Cu}(A)\operatorname{Cr}(\operatorname{salen})\operatorname{Cu}(A)]\operatorname{ClO}_4 \cdot 3\operatorname{H}_2\operatorname{O}, \text{ has been synthesized and characterized,}$ where $\operatorname{H}_2\operatorname{A} = 4 - (6 - \operatorname{methyl-8-oxo-2}, 5 - \operatorname{diazanona-1}, 5, 7 - \operatorname{trienyl}) \operatorname{imidazole}$ and $\operatorname{H}_2\operatorname{salen} = \operatorname{N,N'-di}(\operatorname{salicylidene}) \operatorname{ethylenediamine, respectively.}$ The magnetic moment per molecule increases from 4.61 BM at 297.8 K to the maximum value 5.27 BM at 14 K, and then decreases to 4.42 BM at 4.4 K. The magnetic behavior shows that there operates a ferromagnetic interaction between chromium(III) and copper(II) ions through imidazolate group.

The design of hetero-metal polynuclear complexes has been an attractive field to mimic some biological metal enzymes such as cytochrome c oxidase and superoxide dismutase and to obtain molecular ferromagnets and ferrimagnets. 1,2) Recently we have developed an effective synthetic route to prepare imidazolate-bridged polynuclear metal complexes with various combinations of metal ions. 3-6) Our synthetic method supplies a novel family of hetero-metal complexes which make it possible to investigate systematically the magnetic interaction between magnetic centers with different electronic configurations.

In a previous paper, 6) we reported the synthesis and the antiferromagnetic behavior of imidazolate-bridged iron(III)-copper(II) and manganese(III)-copper(II) dinuclear complexes [Fe(L)Cu(A)]BPh₄ and [Mn(L)Cu(A)]BPh₄, where H₂A = 4-(6-methyl-8-oxo-2,5-diazanona-1,5,7-trienyl)imidazole and H₂L = 1,9-di(salicylidene)-1,5,9-triazanonane and BPh₄ = tetraphenyl-borate. In this study, we report

borate. In this study, we report the synthesis and the ferromagnetic behavior of imidazolate-bridged trinuclear copper(II)-chromium(III)-copper(II) complex [Cu(A)Cr(salen)-Cu(A)]ClO₄, where H₂salen = N,N'-di(salicylidene)ethylenediamine. The schematic structure of the complex is shown in the drawing.

[Cu(A)Cr(salen)Cu(A)]+

1252 Chemistry Letters, 1989

The parent complexes $[Cu(A)]0.5CHCl_3^{5}$ and $[Cr(salen)(H_2O)_2]Cl^7)$ were prepared according to the methods of the literatures.

The complex [Cr(N-MeIm)₂(salen)]ClO₄ was prepared as a reference complex by the reaction of [Cr(salen)(H₂O)₂]Cl with excess of N-methylimidazole in methanol followed by addition of NaClO₄. Anal. Found: C, 47.82; H, 4.69; N, 13.90; Cr, 8.93%. Calcd for [Cr(N-MeIm)₂(salen)]ClO₄·H₂O (CrClO₇N₆C₂₄H₂₈): C, 48.07; H, 4.70; N, 14.01; Cr, 8.69%. $\Lambda_{\rm M}$ 143 S mol⁻¹ cm² in CH₃CN. ν (Cl-O) 1100 cm⁻¹.

The complex $[Cu(A)Cr(salen)Cu(A)]Clo_4$ was prepared by the reaction of $[Cr(salen)(H_2O)_2]Cl$ and $[Cu(A)]0.5CHCl_3$ in methanol with the mole ratio of 1:2.5 followed by addition of a methanolic solution of NaClo_4. The complex was recrystallized from a mixed solution of acetonitrile and methanol. Anal. Found: C, 44.04; H, 4.42; N, 13.52; Cr, 5.09; Cu, 12.43%. Calcd for $[Cu(A)Cr(salen)Cu(A)]-Clo_4\cdot 3H_2O$ $(Cu_2CrClo_{11}N_{10}C_{38}H_{50})$: C, 44.00; H, 4.86; N, 13.50; Cr, 5.01; Cu, 12.25%. Λ_M 150 S mol⁻¹ cm² in CH₃CN. ν (Cl-O) 1100 cm⁻¹.

The component complex [Cu(A)] plays a key role in producing imidazolate-bridged hetero-metal complexes. The complex [Cu(A)Cr(salen)Cu(A)]ClO₄·3H₂O is readily prepared by mixing [Cr(salen)(H₂O)₂]Cl, [Cu(A)], and NaClO₄ in methanol. The elemental analysis (C, H, N, Cu, and Cr) was consistent with the formula of [Cu(A)Cr(salen)Cu(A)]ClO₄·3H₂O. The crystal water was detected by the thermogravimetric analysis. Infrared spectrum showed an intense band at 1100 cm⁻¹ characteristic of ClO₄⁻ ion. Molar electrical conductance in CH₃CN is 150 S mol⁻¹ cm² which is consistent with 1:1 electrolyte.

Crystals of the complex suitable for X-ray analysis has not been obtained so far. In order to estimate the structure, the reference complex $[Cr(N-MeIm)_2-(salen)]ClO_4 \cdot H_2O$ has been subjected to the single-crystal X-ray analysis.⁸⁾ As shown in Fig. 1, chromium(III) ion assumes an octahedral coordination geometry, in which the equatorial plane is composed of N_2O_2 donors of the salen ligand and two axial positions are occupied by the nitrogen atoms of N-methylimidazole. On this basis, we may conclude that in $[Cu(A)Cr(salen)Cu(A)]ClO_4$ the exogenous imidazolate nitrogen atoms of the [Cu(A)] groups coordinate to chromium(III) ion in trans geometry.

Magnetic susceptibilities were obtained for 4.2-100 K by use of a SQUID magnetometer under the magnetic field of 1500 G and for 80-300 K by a Faraday balance. The magnetic property is shown in Fig. 2, in the form of plots of χ_M vs. T, $1/\chi_M$ vs. T, and μ_{eff} vs. T, where χ_M is the magnetic susceptibility per molecule, μ_{eff} the magnetic moment per molecule, and T the temperature. The plots of $1/\chi_M$ vs. T is nearly linear in the temperature range 15-300 K and obeys the Curie-Weiss law $1/\chi_M$ =C(T- θ) with a positive Weiss constant 5 K, suggesting a ferromagnetic interaction within each molecule. The effective magnetic moment per molecule is 4.61 BM at room temperature which agrees well with the spin-only value 4.58 BM of a trinuclear system assuming no magnetic interaction (S₁=1/2, S₂=3/2, S₃=1/2). As the temperature is lowered, the magnetic moment increases from 4.61 BM at 297.8 K to the maximum value 5.27 BM at 14 K, and then decreases abraptly to 4.42 BM at 4.4 K. The maximum value 5.27 BM at 14 K is considerably smaller

Chemistry Letters, 1989

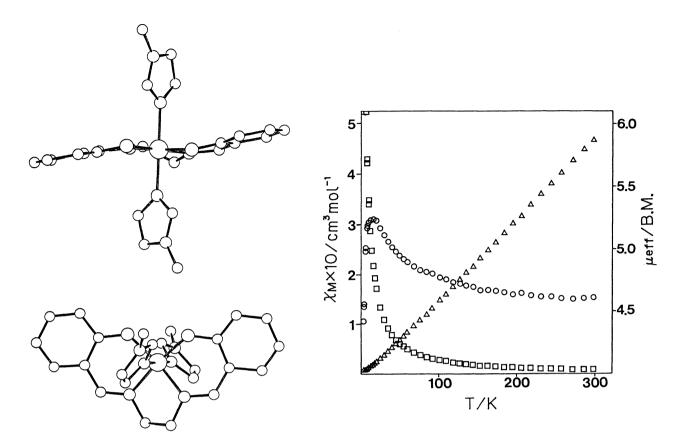


Fig. 2. Plots of χ_M vs. T (\square), $1/\chi_M$ vs. T (Δ), and $\mu_{\mbox{eff}}$ vs. T (O) of [Cu(A)Cr(salen)Cu(A)]ClO₄

than the spin-only value 5.92 BM expected for the spin ground state S_T =5/2 derived from ferromagnetic coupling of trinuclear system (S_1 =1/2, S_2 =3/2, S_3 =1/2). Nevertheless, the magnetic behavior clearly indicates that there operates a ferromagnetic interaction between chromium(III) and copper(II) ions through imidazolate group.

It should be interesting to see why the present complex exhibits a ferromagnetic coupling between chromium(III) and copper(II) ions, whereas [Fe(L)Cu(A)]BPh4 and [Mn(L)Cu(A)]BPh4 show an antiferromagnetic coupling between the adjacent metal ions. The iron(III) and manganese(III) ions of these complexes are high-spin and each has an unpaired electron on the $d_{\rm Z}2$ orbital which is directed to the imidazolate nitrogen atom of [Cu(A)]. The spin-exchange between the electron on the $d_{\rm Z}2$ orbital of the iron(III) or manganese(III) and the electron of the copper(II) through the imidazolate bridge may play a major role in antiferromagnetic spin-exchange found for [Fe(L)Cu(A)]BPh4 and [Mn(L)Cu(A)]BPh4 complexes. On the other hand, the chromium(III) ion of the present complex is presumed to have the $(t_{\rm Zg})^3$ electronic configuration and has no unpaired electron on $d_{\rm Z}2$ orbital to interact with the unpaired electron of copper(II) ion through imidazolate group. This may be the reason for a ferromagnetic spin-exchange in the copper(II)-chromium(III)-copper(II) complex.

The present work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- 1) O. Kahn, "Structure and Bonding," Springer-Verlag, Berlin (1987), Vol. 68, pp. 89-167.
- 2) C. J. Cairns and D. H. Busch, Coord. Chem. Rev., <u>69</u>, 1 (1986).
- 3) N. Matsumoto, H. Murakami, T. Akui, J. Honbo, H. Okawa, and A. Ohyoshi, Bull. Chem. Soc. Jpn., 59, 1609 (1986).
- 4) N. Matsumoto, J. Kanesaka, M. Nakamura, S. Kohata, A. Ohyoshi, and H. Okawa, Bull. Chem. Soc. Jpn., 60, 3056 (1987).
- 5) N. Matsumoto, T. Akui, H. Murakami, J. Kanesaka, A. Ohyoshi, and H. Ōkawa, J. Chem. Soc., Dalton Trans., 1988, 1021.
- 6) N. Matsumoto, Y. Maeda, H. Okawa, T. Akui, T. Kawaji, A. Ohyoshi, M. Kodera, H. Ohsio, and S. Kida, J. Chem. Soc., Dalton Trans., in press.
- 7) S. Yamada and K. Iwasaki, Inorg. Chim. Acta, 5, 3 (1971).
- 8) Crystal data of $[Cr(N-MeIm)_2(salen)]ClO_4 \cdot H_2O$: Formula= $CrClO_7N_6C_{24}H_{28}$, triclinic, space group $P\overline{1}$, a=10.456(1) Å, b=12.945(1) Å, c=9.973(1) Å, α =91.20(1)°, β =90.40(1)°, γ =86.79(1)°, V=1347.5 Å³, R=5.83 %.

(Received April 13, 1989)